A Clustering Structure for Reliable Multicasting

Lenka Motyckova
I'TN, Linkoping University
Sweden

Abstract

In reliable multicast, the multicast packets must
be acknowledged. We propose a clustering structure
which can be used by most of the existing reliable mul-
ticast protocols for collecting acknowledgments and for
making local retransmissions.

Given a network N and a multicast routing tree
(or a set of trees) T, we consider a subgraph G of
N induced by the members of a multicast group. We
then form disjoint clusters (local groups) of multicast
receivers such that the receivers within a cluster are
densely connected in G. The goal is to obtain a bal-
anced clustering structure (dependent on the topology
of G) such that the number of clusters is constant and
the cluster size is kept low. This structure enables
different clusters to process acknowledgments concur-
rently. It is also used to localize retransmissions. That
is, when a packet is missed at a node, we will oblain
the lost packet from another node which resides in the
same cluster or at a nearby cluster whenever possible.

1 Introduction

Reliable multicast is needed in business, medical
and military applications, where information needs to
be disseminated reliably from multiple sources to all
members of a multicast group. In source-initiated reli-
able multicast protocols, it is the source’s responsibil-
ity to make sure that all the members of a multicast
group have received the packets that it sent. On the
other hand, in receiver-initiated reliable multicast pro-
tocols, it is the responsibility of each receiver to detect
and to request any missed packets. A packet’s loss can
be detected by receivers if the packets are numbered
serially. A positive acknowledgment (ACK) is used
to inform the source that a packet is successfully re-
ceived by the receiver(s). A negative acknowledgment
(NAK) is used to inform the source of packet loss. If an
ACK/NAK is sent directly to a source from every re-
ceiver, this might cause ACK-/NAK-implosion where

1Partially supported by a grant from STINT, Sweden

Esther Jennings!

Department of Computer Science
California State Polytechnic University, Pomona

the source spends nearly all of its time processing con-
trol messages. ACK-/NAK-implosion is an important
issue in both sender-reliable and receiver-reliable pro-
tocols. For sender-initiated protocols, the source can
release memory for the data which is already confirmed
by the ACKs from all the receivers. A straightforward
application of this principle, of course, causes ACK-
implosion when the receiver group is large. Receiver-
reliable protocols make the receivers responsible for
the reliability of multicasting. That is, receivers will
send NAKSs for the missed packets only. However, this
alone is not sufficient to insure reliability. Also, nodes
which are incident to congested links might repeat
NAKSs and overload neighboring nodes.

Our proposed protocol avoids ACK-/NAK-
implosion by wusing a clustered structure where
ACK/NAKs are processed locally within each cluster
whenever possible. Clustering is a known principle for
achieving scalability. Our point is to define clusters so
that they match a real topology of a network, i.e. they
span subnetworks densely populated with multicast re-
ceivers. Constant network throughput is another goal
of multicast protocols’ design. By limiting the num-
ber of clusters and intra-cluster spanning tree degree,
the load on the processors is kept independent of the
number of receivers in the network.

1.1 Comparison to Previous Work

To avoid ACK-/NAK-implosion, most of the ap-
proaches proposed to date create local groups of re-
ceivers to obtain a tree structure where each local
group contains a node and some of its neighbors. In
the (rooted) shared ACK-tree of [10], a node forms a
local group with B of its children, where B is a pa-
rameter. The clique clustering of [9] uses a greedy ap-
proach to create local groups of cliques. The structure
we propose contains clusters that can be as dense as
cliques or it can be sparse; the density of the clusters
is controlled by a parameter which can be changed to
suit different applications. That is, the structure we
propose is more general than trees or cliques, and our
structure offers more flexibility than previously pro-



posed structures. The main contribution of this paper
is to propose a clustering structure which is suitable for
gathering acknowledgments and for local retransmis-
sions in reliable multicast. The features of this struc-
ture are: (1) the disjoint clusters enable local actions
within each cluster (for sending ACKs and for retrans-
missions); this makes our protocol scalable, (2) opti-
mal local routing (in terms of hop-count or delay) is
provided within each cluster, (3) the intra-cluster links
are used to propagate information to sources using a
synchronization mechanism.

We note that the tree-based RMTP reliable multi-
cast protocol also uses clustering [11]. However, their
clusters have only depth one. Our cluster depth is
controlled by a density parameter k. Also, the des-
ignated routers (cluster leaders) in RMTP are cho-
sen statically for the multicast session. As an open
problem, it is proposed that cluster leaders should
be selected dynamically based on the actual network
topology; our algorithm is based on the idea of se-
lecting leaders in relatively densely populated areas.
The RMTP protocol uses its tree topology as a log-
ical structure which is not used for communicating
acknowledgments. Acknowledgments are unicast be-
tween corresponding nodes, so the protocol relies heav-
ily on unicast routing tables. In the case of concurrent
sessions, special routing for retransmissions must be
used in RMTP. The structure we propose can be used
by any reliable protocol that handles concurrent mul-
ticast sessions without additional modifications. Our
structure is general and one can apply different ac-
knowledgment techniques to the structure. That is,
any reliable multicast protocol can be imposed on
this structure. For the sake of illustration, we pro-
pose a simple protocol for reliable multicast to show
how this works on our structure. The proposed pro-
tocol has a congestion control mechanism and does
not require unbounded memory as is required by some
source-based tree protocols and by LBRM]8]. In ad-
dition, our structure supports concurrent acknowledg-
ment gathering by using a heartbeat algorithm sim-
ilar to synchronizers[2]. The heartbeat algorithm[13]
delivers acknowledgment packets over the entire mul-
ticast group. Therefore, we do not need specific rout-
ings for each source during concurrent multicasting,
This solves the known problem of managing concur-
rent sessions under the condition that the source does
not know the identities of the receivers and the re-
ceivers do not know the location of each source.

1.2 Features of the Cluster Structure

The criteria suggesting a clustering topology are
similar to the one proposed for synchronizers[2]. We

use the heartbeat mechanism[2] and fast communica-
tion over the intra-cluster spanning trees to acknowl-
edge packets. The structure we use is a shared cluster
graph where the clusters are densely connected inter-
nally and inter-cluster links are sparse. This structure
has the following desirable properties.

Good Scalability: The state information kept at
each receiver is independent of the number of receivers.
For intra-cluster routing, each node only keeps the in-
formation of its parent and children in the intra-cluster
spanning tree. For inter-cluster routing, boundary
nodes keep the information concerning edges leading
to neighboring clusters.

Topology Preserving Clustering: The forma-
tion of local groups is not artificial but truthfully re-
flects the actual connectivity topology of the multicast
group.

Optimal Routing within Clusters: For the
intra-cluster trees, we consider two optimality crite-
ria: hop-count and delay. To optimize hop-count, we
compute a breadth-first-search spanning tree as the
intra-cluster tree using the algorithm of [1]. To opti-
mize delay, we use the Echo algorithm of [4].

Concurrent Sessions: The heartbeat algorithm
supports concurrent sessions automatically. We do not
need to compute routing tables with respect to each
source nor do we need to compute specific labelings for
routing.

2 Topology for Routing Acknowledg-
ments

We organize the receivers of a multicast group into
a shared ACK-cluster structure, built on top of the
multicast routing tree(s) provided by best-effort mul-
ticast routing protocols such as DVMRP [5], PIM [6],
CBT [3], OCBT [12]. We consider concurrent mul-
ticast sessions. These multicast sessions may use a
shared multicast routing tree or several source-based
multicast routing trees. The multicast tree(s) are used
for data routing; our clustering structure is used to col-
lect acknowledgments for the multicast packets.

Given an underlying shared multicast tree, or a set
of source-based multicast trees, we define our graph G
as the (connected) subgraph (of the network) induced
by the vertices of the underlying multicast routing
tree(s). Note that, G contains all the vertices of the
multicast routing tree(s) plus all other network con-
nections induced by these vertices. That is, an edge
of G can be an IP-connection not used by any multi-
cast routing tree(s). Since receivers are nodes that are
directly connected to routers (as peripheral subtrees),
we only consider router nodes in our graph G.



2.1 Clustering

The main idea of clustering is to identify the dense
subgraphs and to make each into a cluster. If an area
is densely populated with receivers, we can impose a
condition for clustering such that the diameter of the
cluster is logarithmic in terms of the number of clus-
ter nodes. This type of clustering has been widely
used; an example in the y-synchronizer by Awerbuch
[2]. By choosing an appropriate density parameter &
(which may vary for different clusters), we can obtain
a cluster graph with low cluster diameter (hence short
delays for gathering acknowledgments and for retrans-
missions), and sparse inter-cluster connections (hence
low communication cost for intercluster acknowledg-
ments).

In our clustering method, we grow the clusters
concurrently. First, we identify the sparse parts and
the dense parts of the graph concurrently according
to the prespecified density parameter k, (1 < k& < n,
where n is the multicast group size). Using this pa-
rameter, each node can determine whether it is in the
dense or the sparse parts of the network. For each
dense part (a cluster), we build an intra~cluster span-
ning tree.

The construction of the shared ACK-cluster struc-
ture is activated when a node receives the first multi-
cast packet from a source. Then each member can
start to compute the population around itself. The
population around a node is computed by an expand-
ing ring search. Each node counts the number of group
members (population) at distance one from itself. If
the population exceeds the density parameter k, then
the node continues to count the number of group mem-
bers at distance two from itself. If the population at
distance two exceeds k2, then the node continues to
distance three. We continue in this way until we come
to distance d where the population is less than k<.
The nodes which are surrounded by sufficient number
of nodes within a certain radius (controlled by the pa-
rameter k) are called cluster nodes. The other nodes
which are in the sparse parts of the graph are called
solitary nodes. A solitary node is regarded as a cluster
containing the single node. Solitary and cluster nodes
are identified concurrently as soon as they receive the
first multicast packet.

2.2 Intra-cluster spanning tree

Once the cluster and solitary nodes are identified,
let G’ be the subgraph of G induced by the cluster
nodes. Then, each connected component of G’ is a
cluster. For each cluster, we construct a intra-cluster
spanning tree as follows. Each boundary node of a

cluster starts to grow its spanning tree using the Fcho
algorithm of [4]. The Echo algorithm has its own ac-
knowledgment mechanism (the echo) which does not
use unicast routing tables. A boundary node is a node
which has an edge whose other end-point belongs to
another cluster. As several boundary nodes may start
growing a spanning tree rooted at themselves, when-
ever two trees meet, one of them is defeated. The
defeated tree stops growing and is abandoned. To de-
cide which tree is the winner, we assume that each
node has a unique identity number (e.g., its address)
and we deterministically let the tree whose root has
the smallest identity be the winner.

Now, if the delays on all the links are exactly the
same, then the spanning tree built by the Echo algo-
rithm is both a breadth-first-search (BFS) tree (min-
imum hop-count) and a shortest-path spanning tree
(minimum delay). However, if the delays on the links
are arbitrary but finite, then the Echo algorithm builds
the tree as fast as possible, but it does not guarantee
the tree to be a BFS tree. If the optimization cri-
terion is to minimize the hop-count, then we would
build a breadth-first-search spanning tree using the
distributed algorithm in [1]. First, we use the Echo
algorithm to select one border router as the winning
node. Then, we build a breadth-first-search spanning
tree rooted at that node.

To achieve good throughput, we need to bound
the number of the clusters. For this purpose we may
need to have a different density parameter k at differ-
ent parts of the network according to their population
with multicast group members. Assume for example
that we select a value of k so big that the algorithm
would create too many small clusters at sparsely pop-
ulated parts of the network. To keep the number of
clusters bounded by a constant we need to reduce the
value of k. In this case another problem may occur:
in the densely populated parts of the network we get
big clusters that would be difficult to manage locally.
The solution lays in "tuning” the parameter k so that
it is not uniform for the whole network. We select a
bigger value of k for dense subgraphs and a smaller &
for sparse.

2.3 Cluster leader and logging-server

In each cluster, the cluster leader is chosen as the
designated router (DR). The DRs are responsible for
processing ACKs and performing retransmissions of
missing packets in their local groups (clusters). Intra-
cluster communication uses the intra-cluster spanning
tree described in Subsection 2.2. For inter-cluster com-
munication, if there are several links connecting a pair
of clusters, then only one of these links is chosen as the



preferred link. Selection is made in designated routers,
so that exactly one preferred link is chosen for each
neighboring cluster. Inter-cluster communication uses
preferred links only. DRs report their existence to ac-
tive sources that might need to have a count of them
when checking fast-ACKs/NAKs from clusters. This
requirement might be relaxed depending on a specific
protocol. For better reliability, each cluster leader has
a backup node called a logging-server [8].

3 Reliable Multicasting

Levine, et al.[10], have shown that negative ac-
knowledgment with periodic polling (NAPP-protocol)
is superior to many other reliable multicast protocols
proposed. Among the protocols reviewed in [10], the
NAPP-protocol is the most scalable approach with re-
spect to the number of receivers and provides the high-
est maximum throughput. We illustrate a usage of
our structure for NAPP-protocol. Levine, et al. use
a shared ACK-tree for routing acknowledgments. In
this paper, we apply a clustering technique that scales
better than a shared tree in large networks because
we strive to obtain a balanced clustering of the mul-
ticast group. In the shared tree, ACK packets are
aggregated from the leaves to the root of the tree. In
comparison to the ACK-tree, our clusters are larger
structures than the local groups (of depth one) in the
shared ACK-tree because each of the clusters may have
an internal spanning tree having more than one layer
of nodes. Thus, using our clusters enables more paral-
lelism in gathering ACKs than on a shared tree.

Our structure enables the clusters to gather ACKs
concurrently. In a shared ACK-tree, ACKs have to be
delivered to different sources, and the routing of these
can be complicated. The routes might need to be re-
labeled whenever the network changes and therefore
topology information must be broadcast over the net-
work and routing tables must be updated. Our struc-
ture does not require any complicated routing scheme.
In case of topology changes, only local updates are
made in the cluster structure.

3.1 Sending Acknowledgments and Re-
transmission

Similar to other protocols (e.g. the protocol in
[10]), we view a reliable multicast protocol as having
two windows: a congestion window (cw) which ad-
vances based on receiver feedback concerning trans-
mission pace and error detection, and a memory allo-
cation window (maw) which advances based on receiver
feedback concerning whether data can be erased from
memory.

The basic strategy is to use two types of acknowl-
edgments to advance these windows separately. The
first type (fast acknowledgment, Fast-ACK/NAK) is
sent immediately to advance the cw of the source and
for requesting retransmission when necessary. Fast-
ACK/NAK enables fast retransmissions and paces the
rate of multicast packets from the source (congestion
window). The second type (aggregated acknowledg-
ment, aggregated-ACK) is used to confirm to a source
that a packet is received by all the receivers of the mul-
ticast group so that the source can delete the packet
(group of packets) from its memory. A cluster leader
keeps packets in its memory until they are success-
fully delivered to all the members of its cluster. The
logging-servers keep a duplicate of the information
stored at their respective cluster leaders. Hence, the
cluster leaders must inform the logging-servers about
window advancements.

3.1.1 Fast-ACK/NAK

These acknowledgments are sent immediately after
detection of a missing packet (NAK) or a success-
ful receipt of a packet (fast-ACK). Within a cluster,
the members send their fast-ACK/NAK to the clus-
ter leader using the intra-cluster spanning tree. Each
node sends its fast-ACK/NAK without waiting for
the acknowledgment from its children. Fast-ACKs
resp. fast-NAKs for the same packets received from
the node’s children are suppressed (not forwarded up-
ward the intra-cluster tree) as long as they are of the
same type, or a fast-NAK is received after a node has
already sent off a fast-ACK. In the later case, a re-
transmission immediately occurs. In the case that a
node sends a fast-NAK first and then gets a fast-ACK
from any of its children, the fast-ACK is propagated
over the intra-cluster tree and retransmissions occur.
This implies that a cluster leader may receive up to two
fast-ACK /NAK messages from each of its children and
the second of them, the correcting fast-ACK, may be
delayed. Therefore, a time constant T (linearly pro-
portional to the delay on the diameter of the cluster)
might be applied by a cluster leader when the leader
is waiting for fast-ACKs from cluster members. Af-
ter this time-out, the cluster leader unicasts the fast-
NAK to a source. When sending a fast-ACK/NAK,
a node includes the source identity, the packet iden-
tity and its own identity in the message. The cluster
leader (DR) unicasts a fast ACK/NAK to the corre-
sponding source. When a source receives the number
of fast-ACKs exceeding the estimated lower bound of
the number of clusters, then it advances its congestion
window.



3.1.2 Aggregated ACK

The Aggregated-ACK is used to confirm reliable re-
ceipt of a packet by all the receivers of a multicast
group; it confirms that there will be no more retrans-
mission requests by NAKs. NAKs are not completely
reliable because they can be lost. Therefore, we need
to couple this with a time-out scheme. If a timer ex-
pired and no fast-ACK/NAK is received for a packet,
then the packet is assumed to be lost and will be mul-
ticast again.

For aggregated-ACKs, we apply a hierarchical
aggregation mechanism. First each cluster member
must report aggregated-ACKs to its cluster leader.
These aggregated-ACKs are collected on the intra-
cluster tree from the leaves to the root. A node sends
aggregated-ACKs after receiving it from all its chil-
dren. Then cluster leaders synchronize with neigh-
boring clusters to advance the memory window (re-
lease the storage of acknowledged packets and his-
tory information from its memory). The synchroniza-
tion mechanism works as follows in two phases. In
phase one, a leader sends aggregated-ACKs to all its
neighboring clusters, and waits to receive aggregated-
ACKs as replies. In the second phase (after receiv-
ing an aggregated-ACK as a reply in phase one from
each neighboring cluster), a cluster leader sends final
aggregated-ACKs to all neighboring clusters over pre-
ferred links. After receiving final aggregated-ACKs
from all neighboring clusters, the cluster leader knows
that it is safe to advance the memory window, and it
notifies the local source.

3.1.3 Retransmission

Within the boundary of a cluster, a missed packet is re-
transmitted on the intra-cluster spanning tree from the
cluster leader or between neighbors. Otherwise, the
cluster leader requests the missing packet from neigh-
boring clusters first. If this also fails, the cluster leader
unicasts to the source to request retransmission. If the
source did not receive the fast-ACK/NAK from all the
cluster leaders (DRs) after a timeout, the packet is as-
sumed to be lost and the source will retransmit the
packet.

3.2 Concurrent Multicasting

Our cluster structure supports concurrent multi-
cast sessions because we distribute aggregated-ACKs
over the entire multicast group. That is, the
aggregated- ACKs for packets are synchronized over all
the clusters, so the active sources within each cluster
are informed of the aggregated-ACKs. Therefore, we

do not need to set up any specific routings to send
aggregated-ACKs to each source. This is the major
difference between our proposed protocol and other
protocols.

3.3 Throughput Analysis

The tree-based [11] and tree-NAPP [10] protocols
have constant throughput regardless of the number of
receivers. The cluster structure is created using the
parameter k& to balance the number of clusters and
the number of nodes in each of the clusters. In wide
area networks, the degree of each node is bounded by
Koz, where K, s usually a constant. That is, the
entire network is usually not a single large clique nor
a network with very high connectivity.

By choosing the parameter & carefully in accor-
dance to the graph topology, we achieve a good bal-
ance between the number of clusters and the cluster
size while the number of clusters is bounded by a con-
stant.

To analyze the throughput of reliable multicast
protocols, we use the same model as [10]. The through-
put of a protocol is a function of the number of packets
that have to be processed at a given node in order to
multicast a data packet. For this analysis, we assume
that all loss events at any node in the multicast are
independent and the probability of packet loss is p for
any node. We avoid complicated analysis by assuming
no loss of fast-ACK/NAK nor aggregated-ACKs. The
following analysis is made with respect to the process-
ing cost required at a node to successfully multicast a
packet to all members.

Source: We send fast-NAKSs through cluster lead-
ers where each cluster leader represents a large number
of receivers; this will dramatically decrease the num-
ber of fast-ACK/NAKs received. The number of clus-
ter leaders is bounded by a constant. Then the source
retransmits lost packets if it receives NAKs which can-
not be locally handled in the clusters. The number
of NAKs received at a source is dependent on the
loss probability and the number of cluster leaders. A
source node is also a cluster node, so it participates in
the gathering of aggregated-ACKs. This is carried out
on the intra-cluster spanning tree. Assumed that the
degree of a spanning tree is bounded by the constant
Ko, then it receives a constant number of ACKs
from its children and sends one aggregated-ACK to its
parent. Thus, the load at a source is bounded by the
number of clusters which is claimed to be constant.

Cluster leader: A leader is also a cluster node
so it participates in the gathering of aggregated-ACKs.
Assumed that a degree of a spanning tree is bounded
by the constant K,,,;, then it receives a constant



number of ACKs from its children and sends one
aggregated-ACKs to a constant number of children
(towards the border nodes which are incident to pre-
ferred links and to the active sources). A cluster leader
performs local retransmissions, and it may fetch pack-
ets which are fast-ACKed from cluster nodes. The
number of retransmissions is bounded by the degree
of intra-cluster tree, K,,,,. By choosing K. as a
constant, the load of the cluster leader is bounded by
constant.

Receiver or Hop-node: A cluster node partici-
pates in the gathering of aggeregated-ACKs. Assumed
that a degree of a spanning tree is bounded by the
constant K,,,., then it receives a constant number of
ACKs from its children and sends one aggregated-ACK
to its parent. So, the load of a receiver or a hop-node
is constant.

4 Conclusion

In this paper, we have proposed a clustering struc-
ture which is suitable for collecting acknowledgments
and for local retransmission of multicast packets. This
structure can be used by most of existing reliable mul-
ticast protocols. We have proposed a simple multicast
protocol which uses this shared-cluster structure and
have shown that the protocol has good scalability. It
also avoids ACK-/NAK-implosion by carefully choos-
ing the density and cluster size parameters.

We also analyze its throughput and found that
nodes in the cluster structure have a constant through-
put. This structure is scalable because we distribute
the responsibility of gathering acknowledgments and
retransmissions to the clusters. This allows more par-
allelism in acknowledgment packets gathering and lo-
calize the retransmissions. Also, using this struc-
ture saves memory because we do not need to com-
pute/update routing tables with respect to each source
during multiple concurrent sessions.

Adding a new receiver into a cluster does not
change a diameter of the cluster. A receiver leaving
a multicast group may cause splitting a cluster into
two; in this case a local reconfiguration of the topol-
ogy is necessary.

We balance the number of clusters and their size
while keeping the number of clusters constant. The
first issue is to distribute the load evenly over all in-
volved routers. The second one is to prevent multicast
sender from being overloaded by ACK/NAK packets
implosion. These properties make a reliable multicast
protocol running on the top of the proposed clustering
structure, scalable.

References

[1] Awerbuch, B., Gallager, R.: “A new distributed
algorithm to find breadth first search trees”, IEEE
Transactions on information theory, vol. IT-33,

no. 3 (1987) 315-322.

[2] Awerbuch, B.: “Complexity of network synchro-
nization”, Journal of the ACM, vol. 32, No. 4,
Oct. (1985) 804-823.

[3] Ballardie, T., Francis, P., Crowcroft, J.: “Core
based trees (CBT): An architecture for scalable
inter-domain multicast routing”, Proc. ACM SIG-
COMM (1993) 85-95.

[4] Chang, E. J. H.: “Echo algorithms: depth par-
allel operations on general graphs”, IEEE Trans.

on Software Engineering, vol. SE-8, no. 4, July
(1982) 391-400.

[5] Deering, S., Cheriton, D.: “Multicast routing
in datagram inter-networks and extended lans”,
ACM Trans. on Comp. Sys., vol. 8 (1990) 85-110.

[6] Deering, S., et al.: “An architecture for wide-
area multicast routing”, Proc. ACM SIGCOMM
(1994) 126-135.

[7] Floyd, S., Jacobson, V., Liu, C.-G., McCanne,
S., and Zhang, L.: “A reliable multicast frame-
work for light-weight sessions and application
level framing”, Proc. ACM SIGCOMM (1995)
342-356.

[8] Holbrook, H., Singhal, S., Cheriton, D.: “Log-
based receiver-reliable multicast for distributed
interactive simulation”, ACM SIGCOMM (1995)
328-341

[9] Krishna, P., Vaidya, N., Chatterjee, M., Prad-
han, D.: “A cluster-based approach for routing in
dynamic networks”, ACM SIGCOMM, Computer
Communication Review, Apr. (1997).

[10] Levine, B., Lavo, D., Garcia-Luna-Aceves, J.J.:
“The case for reliable concurrent multicasting us-
ing shared act trees”, Proc. ACM Multimedia,
Nov. (1996).

[11] Lin, J. C., Paul, S.: “RMTP: a reliable multicast
transport protocol”, Proc. INFOCOMM (1996).

[12] Shields, C.:
ter’s thesis, University of California — Santa Cruz

(1996)

[13] Tel, G.: “Introduction to distributed algorithms”,
Cambridge University Press (1994).

“Ordered core based trees”, Mas-



